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Abstract

Traditional techniques for computing classical trajectories are problematic when

dealing with many degrees of freedom.  One might usually expect to map-out the entire

potential energy surface (PES) before starting the calculation.  Direct dynamics is a

method which overcomes this problem by removing the need to compute the PES

explicitly.

When studying photochemical systems one encounters a fundamental problem:

the detailed bond-breaking / bond-making processes which occur in these reactions must

be modelled using some form of quantum-mechanical potential surface.  An efficient

solution is to employ a hybrid potential, which utilises a combination of quantum and

classical theory to generate the electronic structure data required for a trajectory.

This thesis describes a method which combines direct dynamics with a hybrid

potential — MM-VB (molecular mechanics with valence bond) — making it possible to

study the dynamics of quite large organic photochemical systems without neglecting any

degrees of freedom at all.  Conical intersections (surface crossings) play a fundamental

role in photochemical mechanisms.  To simulate transfer through an intersection, a

trajectory-surface-hopping (TSH) algorithm is used.

Our aim is to understand the factors which control photoproduct distribution, and

to examine general dynamic effects caused by the reaction path and surface topology.  The

first four reactions we have studied involve the photochemistry of azulene, benzene,

cyclohexadiene/hexatriene and all-trans octatetraene, respectively.  Full dynamics involving

all degrees of freedom have never before been computed for any of these systems.  The

fifth application chapter documents some interesting soliton-type dynamics which we

predict can occur in linear polyenes, via a conical intersection mechanism.  The final

project, a host-guest study using a cyclodextrin cavity, demonstrates the effectiveness of

MM-VB direct dynamics for studying large systems.
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Chapter 1

Introduction

1.1 Modelling Photochemical Reactivity

Molecular dynamics (MD) [1, 2] is one of the most appealing ways to investigate

a chemical reaction since it provides a series of step-by-step ‘snapshots’ of the atoms,

allowing us to ‘see’ their journey from reactant to products.  Given a set of initial

positions for the atoms or molecules, the change in geometry at each successive step is

found by solving equations of motion subject to a force field which contains the effect of

the surrounding nuclei and electrons.  The path taken by the system of atoms or molecules

is the trajectory.  A rigorous description of the electronic and nuclear motion is only

obtainable by evolving the wavefunction by means of the time-dependent Schrödinger

equation (see, for example, the wavepacket dynamics of Köppel et al. [3]), a problem

which is a huge computational effort even for the smallest systems (currently, only two or

three degrees of freedom can be included).  Fortunately, classical mechanics, i.e.

Newton’s second law, can describe the motion of the nuclei quite adequately in most

situations, and the problem is greatly simplified.

The large disparity in velocity between the nuclei and electrons means that the two

components can be separated via the Born-Oppenheimer approximation, discussed in

detail later.  This gives rise to the concept of a potential energy surface (PES) [4, 5], which

is one of the most important tools for visualising reaction pathways and mechanisms.  A

PES is generated by mapping-out the electronic potential energy of the system as a
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function of the various coordinates (degrees of freedom) describing the change in

geometry of the nuclei.  Minima on this surface correspond to the reactants and products

(and sometimes intermediate structures).  For a chemical reaction to occur there must be

an energetically accessible pathway between the reactant and product minima.  The

minimum energy path (MEP) defines the route with lowest potential energy.  In mass-

weighted coordinates this is called the intrinsic reaction coordinate (IRC) [6].  If a high

energy barrier lies somewhere along this path then the reaction may not occur at all.  For a

diatomic molecule there is only one internal degree of freedom (the bond length) and so

the PES is simply a curve, but in general there are more than two geometric parameters to

plot, and visualising the multi-dimensional surface (a hypersurface) is not so

straightforward.  A useful way to analyse the dynamics of a reaction is to consider the

motion of a ball rolling on the potential energy surface.  Each position of the ball

corresponds to a unique geometry of the atoms.  This is one of many ways of visualising

the results of a trajectory calculation.

At this point we must make a distinction between a thermal reaction and a

photochemical reaction.  A thermal reaction is governed by the topology of a single

potential energy surface (an adiabatic reaction), whereas a photochemical reaction starts

with an excitation process [7], initiated by UV or visible light of the appropriate

wavelength, transferring the system onto an electronically excited state [8].  More

precisely, absorption of a photon by the singlet S0 ground state produces an excited

singlet state Sn.  Intersystem crossing (ISC) can cause triplet states to be populated.

Based on the Franck-Condon principle, which again relies on the fact that the electrons

move much faster than the nuclei, the initial excitation is assumed to be a ‘vertical’

transition from a ground state minimum energy well, during which the nuclei have no time

to adjust.  The topology of the new potential surface then controls the dynamics of the

nuclei, until ultimately the system decays back to the ground state.  Hence, reactions which

cannot occur thermally, due to prohibitively large energy barriers on the ground state

potential surface, may become highly reactive via a photochemical mechanism.
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The decay from the S1 state back to the ground state can occur by fluorescence, or

by internal conversion via a radiationless process.  For many years the mechanism of

decay without emission of radiation was not well understood.  It was thought to occur at a

minimum on the excited state, in a region of the potential where the ground and excited

state surfaces become close at an avoided crossing.  Such processes are slow, however,

and fail to explain how systems could decay on a femtosecond timescale.  More recently,

it has been recognised that a true crossing of potential surfaces can take place, creating a

new topological feature called a conical intersection (CI) (see [9, 10] and references

therein).  The intersection acts like a funnel linking the excited and ground state surfaces,

providing a fully-efficient decay path back to the ground state products.  There need not

be a transition state separating the Frank-Condon region and CI, but if one is present it

will control the conditions under which the radiationless route is accessible.  Figure 1.1

summarises the general features found on a potential energy surfaces for a photochemical

reaction.  These ideas are explored further in Sections 1.2 and 1.3.
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The idea that a conical intersection could play a key role in the decay mechanism for

excited state reactions was proposed by Teller [11] more than 30 years ago.  More

recently, Zimmerman [12] and Michl [13] both suggested that the presence of a CI could

be responsible for the specific photoproducts formed after transfer to the ground state via

internal conversion.  The literature now contains many theoretical studies of organic

systems which find low-lying surface crossings — see the ‘highlight’ article by M.

Klessinger [9], or for some recent examples see ref. [14].  Modern experimental

techniques [15] have enabled researchers to verify the existence of conical intersections.

Observing ultra-fast radiationless decay is the main indication of a mechanism involving a

CI.  Laser spectroscopy can now be performed at a sub-picosecond level, giving reliable

data for excited state lifetimes, decay rates, and energy thresholds for these reactions.  If

the radiationless decay is thermally driven, i.e. it is ‘switched-on’ at a certain temperature

[16], this suggests that a transition state lies on the excited state path leading to the

intersection.  Quantum yield measurements provide information about the product

distribution, and hence the possible ground state paths accessible from the CI.

Currently, most theoretical studies of photochemical reactions in the literature rely

solely on non-dynamical information to elucidate mechanistic information, i.e. structural

analysis of critical points, intersections and minimum energy paths on the potential

surfaces.  Full-scale realistic dynamics simulations are usually considered too costly in

terms of computer CPU time.  The purpose of this thesis is to describe and implement a

molecular dynamics method capable of accurately modelling the photochemistry of

relatively large organic reactions without the need to neglect any degrees of freedom.  In

developing a method which is capable of achieving this goal there are three main aspects to

consider:

•  A method for computing classical trajectories efficiently.

•  How to treat the system in regions where the classical approximation fails.

•  Choice of force field for generating the potential energy surfaces and other data

    needed for the trajectories.
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Each of these issues is discussed briefly below, and in detail in Chapters 2 and 3.  The

remaining sections in Chapter 1 introduce the Born-Oppenheimer approximation and

potential energy surface.

Traditional techniques for computing classical trajectories are problematic when

dealing with many degrees of freedom.  One might usually expect to map-out the entire

PES before starting a trajectory calculation, and use a piecewise or global fitting procedure

to obtain usable functions (for example, see ref. [17]).  Direct dynamics (Section 2.1),

first  formulated by Helgaker et al.[18], is a method which overcomes this problem by

removing the need to compute the entire PES explicitly.  Instead, the potential surface data

is computed ‘on-the-fly’, as required by each specific trajectory.

In the vicinity of a conical intersection the Born-Oppenheimer approximation

breaks down (see Section 1.2).  The reaction is then described as nonadiabatic.  By

definition, classical trajectories are restricted to a single potential surface, and are not valid

in regions where there is strong coupling between two or more electronic states.  However,

if the coupling region is localised then we can retain the classical trajectory model, but

introduce a semi-classical algorithm to allow transfer of trajectories from one surface to

another.  Tully and Preston [19] were the first to suggest using trajectory surface hopping

(TSH, Section 2.2) to model a nonadiabatic process.

Initial conditions for the simulations are controlled by a simple geometry sampling

technique (Section 2.2.7).  By computing a batch of trajectories we can follow the

evolution of a ‘classical wavepacket’ over the potential surface.  After analysing a number

of these batches it is possible to gain valuable information about product yield distribution

and other dynamic effects.
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Computational details are discussed in Section 2.3, including flow-charts for the

dynamics program, and an outline of how the code is implemented on a massively-parallel

processing (MPP) computer.  There is also a summary of the techniques used for

analysing the results of individual trajectories and packets of trajectories.

The most time-consuming part of almost all MD simulations is the calculation of

the force acting on each particle at every step.  When studying photochemical systems one

encounters a fundamental computational problem: the detailed bond-breaking / bond-

making processes which occur in these reactions must be modelled by some form of

quantum-mechanical potential.  Ideally one would use an ab initio method, and there are

many ab initio dynamics papers in the literature [20], but these are very costly.  A typical

trajectory calculation requires at least a few hundred steps, and moreover, to investigate a

range of initial conditions may require many hundreds (or thousands) of individual

trajectories, by which time ab initio quantum chemistry becomes far too inefficient.  The

solution is to employ a hybrid potential (Chapter 3), using a combination of quantum and

classical theory to generate the electronic structure data required for the trajectory.  One

such method, MM-VB [21], combines molecular mechanics with valence bond theory, and

is known to reproduce the essential features of ground and excited state potential surfaces

for organic photochemical reactions.  Using MM-VB and direct dynamics together [22]

opens-up the possibility of investigating quite large systems (tens or hundreds of atoms)

at relatively low computational cost, without neglecting any degrees of freedom in the

simulation.

The remainder of the thesis documents applications of the method to a range of

important photochemical reactions.  The main aim is to examine the dynamical effects of

reaction paths and to understand the factors controlling product distribution and quantum

yields.  Explaining the ultra-fast decay of azulene (Chapter 4) is a long-standing problem

in photochemistry.  However, the potential surface for this reaction is quite simple, and

provides a good introductory system.  It also highlights the fundamental role of the
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conical intersection: the topology in the region of the surface crossing is directly

responsible for the observed photochemistry.  In Chapter 5, batches of trajectories

(‘classical wavepackets’) are introduced to investigate the low quantum yield of prefulvene

observed when benzene is irradiated.  The interconversion of cyclohexadiene and

hexatriene (Chapter 6) is a more subtle problem since in addition to the two major

photoproducts there is the possibility of forming a third product.  Again, packets of

trajectories are used to explain the observed quantum yields.  In particular, we look at the

ground state pathways leading from the apex of the cone, and find that access to one of the

photoproduct channels is severely limited.  Our dynamics results for the cis-trans

photoisomerisation of octatetrane (Chapter 7) confirm recent experimental findings, yet

suggest that a highly complex reaction path is involved.  Chapters 8 and 9 are of a more

speculative nature, where we use MM-VB dynamics to predict photochemical behaviour

for systems where little experimental or theoretical data is currently available.  In Chapter

8 we show how the decay of linear polyenes via a conical intersection can produce highly

intricate relaxation dynamics.  On transfer from the excited state (S1) to the ground state,

polyenes are expected to perform an almost complete single/double bond reversal.

However, electronic recoupling at the intersection can cause the ‘wrong’ recoupling to

persist on the ground state surface.  Dynamics results indicate that the lifetime of this

meta-stable state increases for long-chain polyenes.  Furthermore, coherent electronic and

vibrational motions (‘solitons’) are observed during the recoupling phenomenon.  Chapter

9 describes preliminary results of a dynamics study of an octatetraene molecule inside a

cyclodextrin cavity.  The restricted environment is found to cause a marked change in the

dynamical behaviour of the excited octatetraene guest molecule.  This final application

chapter demonstrates the potential of MM-VB dynamics for studying host-guest systems

and large organic systems in general.

Finally, Chapter 10 summarises the main results and observations which arise

from this work.
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1.2 The Born-Oppenheimer Approximation

The general form of the complete Hamiltonian operator (ignoring spin-orbit

interactions) which governs the motion of a system of n electrons and N nuclei can be

written as

  
ˆ H tot = Tnuc(R) + ˆ H el  , (1.1)

where Tnuc(R) is the kinetic energy operator for the nuclei (of mass MI), which is a

function of the nuclear geometry R only,

Tnuc (R) = −
1

2

1

MII =1

N

∑ ∇I
2 . (1.2)

ˆ H el  is the electronic Hamiltonian, and is the sum of the remaining kinetic and potential

energy operators (where r represents the electronic coordinates, el=electronic,

nuc=nuclear),

  
ˆ H el = Tel(r) + Vnuc -nuc(R) + Vel-nuc (r,R) + Vel -el (r) . (1.3)

In atomic units, the expression becomes

ˆ H el = −
1

2
∇i

2

i=1

n

∑ +
ZI ZJ

RI − RJI <J

N

∑ −
ZI

ri − RII =1

N

∑
i =1

n

∑ +
1

riji < j

n

∑  , (1.4)

where i and I are labels for the electrons and nuclei respectively, r  is an electron-electron

or electron-nuclear distance, R is a nucleus-nucleus distance, and Z is a nuclear charge.

The nuclei, being much heavier than the electrons, move relatively slowly which

suggests that it would be reasonable to separate the two types of motion.  This is the basis

of the Born-Oppenheimer approximation (or separation).  Rather than attempting to solve

the Schrödinger equation in the space of all the variables, the nuclei can be considered as
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fixed and the time-independent Schrödinger equation solved for the electrons alone (using

the electronic Hamiltonian instead of the full Hamiltonian):

  
ˆ H el (r; R)  φk (r;R) = Ek (R) φk (r;R) . (1.5)

(from now on we drop the subscript and accent from ˆ H el , and assume we are always using

the electronic Hamiltonian operator).  The eigenvectors of this equation are the adiabatic

electronic wavefunctions φk , which vary parametrically with nuclear configuration R, but

do not depend on the velocity of the nuclei.  Consequently, we can write the total

wavefunction Ψ(r,R) as the product of the electronic wavefunction   φk (r;R)   and a nuclear

wavefunction   χ (R) ,

  Ψ(r,R) = φk (r;R)χ (R) . (1.6)

Solving Equation 1.6 for a particular nuclear geometry gives, in general, an infinite set of

eigenvalues Ek.  Moving in the configuration space R then maps out the potential energy

surface for each electronic state.  The lowest energy solution gives the ground state

surface.  The other roots generate the excited state surfaces, although we might only be

concerned with the lowest of these.  The force acting on the nuclei at any geometry (for a

particular potential surface) is simply obtained from the energy gradient,

FI = −
∂E

∂R I

. (1.7)

In most situations, the B-O approximation is reliable, but for one stage of a

photochemical reaction it fails.  When two potential surfaces are nearly degenerate, and the

nuclear velocity is non-zero, nuclear and electronic motion become coupled, and the

molecule no longer feels the effect of a single electronic state.  The idea of a surface hop is

then used as a way of dealing with this phenomenon in a semi-classical way, whilst still

retaining the classical trajectory model.  The mathematical details of trajectory surface

hopping and nonadiabatic coupling are given in Section 2.2.
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1.3 The Potential Energy Surface and it's Interpretation

1.3.1 General Concepts

A molecule or group of molecules comprising N atoms will possess 3N-6 degrees

of freedom (or 3N-5 in the case of a diatomic).  These result from movement of each

nucleus in three independent directions, but reducing this by six due to the three

translations and rotations of the molecule as a whole, which leave the internal energy

unchanged.  Further degrees of freedom can sometimes be ignored if they correspond to

small changes in potential energy.  Thus, a PES can be constructed by plotting potential

energy as a function of internal coordinates (or linear combinations of them) such as bond

lengths or angles, E(R1, R2, .. ., Rn ) .  Such a plot is easily obtainable when only one

coordinate is needed.  However, even for a triatomic system we have 3×3-6=3 degrees of

freedom, and thus four variables to plot.  The PES must be constructed using a three-

dimensional grid of points, each having an energy value E(R1, R2, R3) .  Multi-dimensional

hypersurfaces are difficult to visualise but can be analysed using various graphical tools,

such as isosurfaces (surfaces of constant energy).  Often it is possible to reduce the

problem to two important geometrical variables, and then plot the potential energy as a

function of these alone.  For a complex reaction, this approximation might not be

meaningful, but it is still useful to draw a schematic potential surface, with reaction paths

joining the critical points on the surface, even though the channels are multi-dimensional

in reality.  Information about the reaction mechanism and relative barrier heights can be

successfully conveyed, and such diagrams are common in the literature.

Features on the surface which are of chemical interest are the critical (fixed)

points.  At a critical point, the first derivative of the potential energy function with respect

to all coordinates will be zero (i.e. ∂E / ∂Ri = 0 , for all i).  Minima occur if the second

derivatives (the force constants) with respect to all coordinates are positive, and

correspond to the stable products, reactants, or intermediate structures.  Standard
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optimisation (minimisation) techniques [23] are used to locate these points.  Starting from

a specified initial geometry, a Newton-Raphson-type formula uses the current first and

second derivatives to compute a displacement (step) toward the local minimum.  This is

repeated until convergence, i.e. the forces and displacement become essentially zero.  A

saddle-point is found at transition structure geometries.  Here, the surface is a maximum

in the direction of the reaction path, and a minimum in the remaining directions.  Higher

order saddle points can exist, which have more than one direction of negative curvature.

As an example of the dynamical behaviour which can occur on a potential surface, Figure

1.2 shows the results of two trajectories [24].  The first (Figure 1.2a) uses an analytic

expression for a minimum, and shows how a trajectory can be trapped by the shape of the

potential surface.  Unless the trajectory is damped (i.e. kinetic energy removed) then it will

continue to perform oscillations in the minimum.  The second example (Figure 1.2b)

shows the familiar potential surface for a linear triatomic exchange reaction (computed via

a LEPS expression, see Section 3.3.2), to demonstrate a transition state between reactant

and product valleys.  If the trajectory has the correct magnitude and direction of

momentum as it reaches the saddle point, then the barrier is surmounted and the reaction

takes place.  Although these appear to be rather simple examples, it turns out that

dynamics over multi-dimensional surfaces can be understood in a very similar, intuitive

way.
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1.3.2 Conical Intersections

The preceding discussion focused on reactions governed by a single potential

energy surface.  Two potential surfaces can intersect along an n-2 dimensional

hypersurface, where n is the number of independent variables in the potential function.  It

is easiest to begin by considering two potential energy curves, intersecting at a single

point.  Movement away from this point lifts the degeneracy.  This idea can be extended to

an arbitrary number of dimensions in the sense that we can always distinguish two vectors,

say x1  and x2  (which are linear combinations of bond lengths, angles etc.), such that if

one were to plot the energy as a function of these variables the surface would have the

form of a double cone in the region of the degeneracy [25] (Figure 1.3).  Hence the

crossing is called a conical intersection (CI).  More precisely, the branching plane is

defined by the gradient difference and derivative coupling vectors, in Equation 1.8 and

Equation 1.9 respectively, where we use the same notation as in the previous section.  The

derivative coupling (or nonadiabatic coupling) vector has a special significance when using

a trajectory surface hopping algorithm since its magnitude and direction is a factor in

determining where the hop occurs (Section 2.2).  Any movement in the branching plane

away from the intersection point will result in the degeneracy being lifted.  Movement in

the remaining n-2 dimensions (the intersection space) leaves the two surfaces degenerate,

but may cause the potential energy to rise or fall.
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       (1.8)
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∂R

φ2       (1.9)

Figure 1.3  Diagram of an n-dimensional conical intersection.

In theory, trajectories can decay at any point on the intersection hyperline.

However, if we assume that excited state trajectories will follow the lowest energy paths on

the PES, then decay will most likely happen near the lowest energy point on the n-2

dimensional intersection space.  As part of a systematic study of the potential surface for a

photochemical reaction it is therefore normal practice to locate the minimum energy points

on any surface crossings.  This is achieved by requiring simultaneous convergence of two

criteria [26]; the energy of the excited state surface is minimised in the (n-2)-dimensional

space orthogonal to x1  and x2 , and the energy difference (E1-E2) is minimised.  Since x1

and x2 are the only two directions of motion with non-zero gradients, the initial ground

state motion of a decaying trajectory must lie in the x1x2  plane.  Analysis of the geometric

distortions caused by moving along x1  or x2  can provide clues as to which products will

form.  A number of criticisms can be applied to this approach.  Firstly, trajectories are

only likely to follow the minimum energy path under very low-energy (‘vibrationally

cold’) conditions, such as those found in solution.  Under gas phase conditions this will

not be the case — trajectories may have large kinetic energy on the excited state surface.

Moreover, under any conditions, decaying trajectories find themselves at the top of a

‘spike’ on the ground state potential.  A conical intersection plays a fundamentally
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different role to that of a transition state.  A transition state lies on a reaction path

connecting a single product minimum to a single reactant minimum, whilst a conical

intersection can connect an excited state reactant with numerous ground state reaction

paths and products.  In fact, the normal definition of a reaction path — as the lowest

energy route from reactants and products — is too simplistic to be applied to multi-

surface reactions.  Defining the reaction path through a conical intersection is a more

subtle problem, to be tackled later (Chapter 6).  Briefly, if the base of the cone is circular

(as in Figure 1.3 above) then all directions of decay are equally likely (neglecting the

momentum carried from the excited state).  However, if the base of the cone is elliptic then

two sides automatically become more favourable paths for trajectories.  More generally, a

number of decay paths may exist at the apex of the cone, and others may develop further

down the manifold, all influencing product formation.  Prediction of photoproduct

distribution depends on this topology, coupled with the effects caused by the kinetic

energy possessed by the trajectories.  Large amounts of kinetic energy can be gained on

the ground state surface, and take trajectories far from the minimum energy paths.  Hence,

there are many reasons for wanting to obtain both dynamical and structural information

for reactions involving conical intersections.  Figure 1.4 illustrates a schematic potential

surface for a reaction exhibiting a transition state leading to a conical intersection, and

three ground state photoproducts.
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So far we have only seen situations where the apex of the cone is locally the lowest

energy point on the excited state surface, and the highest energy point on the ground state

surface.  This is a called a peaked conical intersection.  In fact there are three types of

intersection, each influencing the dynamics in a different way.  The distinction between

these is shown in Figure 1.5.  When viewing the peaked CI in two dimensions (Figure

1.5a) it is clear that the two intersecting curves have gradients of opposite sign.  However,

if the curves have gradients of the same sign (Figure 1.5c) then the lowest energy point on

the intersection lies above the local minimum — the conical intersection is tipped  (or

sloped).  The intermediate case is shown in Figure 1.5b.  Here, the excited state part of the

surface is almost flat in the region of the intersection, and one curve has a near-zero

gradient.  The terminology used is that of Ruedenberg et al. [27].  Later we shall see

examples of all three shapes of conical intersection, and find that the surface topology is a

critical factor governing the formation of photoproducts.
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